z-logo
open-access-imgOpen Access
Deep Learning-Based Symbol-Level Precoding for Large-Scale Antenna System
Author(s) -
Changxu Xie,
Huiqin Du,
Xialing Liu
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/6698424
Subject(s) - precoding , computer science , antenna (radio) , symbol (formal) , scale (ratio) , telecommunications , artificial intelligence , mimo , cartography , channel (broadcasting) , programming language , geography
In this work, we consider a multiple input multiple-output system with large-scale antenna array which creates unintended multiuser interference and increases the power consumption due to the large number of radio frequency (RF) chains. The antenna selective symbol level precoding design is developed by minimizing the symbol error rate (SER) with limits of available RF chains. The ℓ 0 -norm constrained nonconvex problem can be approximated as ℓ 1 -minimization, which is further solved by alternating direction method of multipliers (ADMM) approach. The basic ADMM scheme is mapped into iterative construction process where the optimum solution is obtained by taking deep learning network as building block. Moreover, because that the standard ADMM algorithm is sensitive to the selection of hyperparameters, we further introduce the back propagation process to train the parameters. Simulation results show that the proposed deep learning ADMM scheme can achieve significantly low SER performance with small activated subset of transmit antennas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom