An Algorithm of Occlusion Detection for the Surveillance Camera
Author(s) -
Peng Shi,
Bin Hou,
Jing Chen,
Yunxiao Zu
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/6698160
Subject(s) - computer science , artificial intelligence , similarity (geometry) , computer vision , frame (networking) , image (mathematics) , algorithm , background image , telecommunications
As more andmore surveillance cameras are deployed in the Internet of,ings, it takes more andmore work to ensure the cameras are not occluded. An algorithm of detecting whether the surveillance camera is occluded is proposed by comparing the similarity of the images in this paper. Firstly, the background modeling method based on frame difference is improved. ,e combination method of the background difference and frame difference is proposed, and the experimental results showed that the combination algorithm can extract the background image of the video more quickly and accurately. Secondly, the LBP (Local Binary Patterns) algorithm is used to compare the similarity between the background image and the reference image. By changing the window size of the LBP algorithm and setting an appropriate threshold, the actual demands can be satisfied. So, the algorithms proposed in this paper have high application value and practical significance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom