A Secure IoT‐Based Cloud Platform Selection Using Entropy Distance Approach and Fuzzy Set Theory
Author(s) -
Alakananda Chakraborty,
Muskan Jindal,
Mohammad R. Khosravi,
Prabhishek Singh,
Achyut Shankar,
Manoj Diwakar
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/6697467
Subject(s) - computer science , cloud computing , internet of things , selection (genetic algorithm) , entropy (arrow of time) , fuzzy logic , data mining , fuzzy set , computer security , artificial intelligence , operating system , physics , quantum mechanics
With the growing emergence of the Internet connectivity in this era of Gen Z, several IoT solutions have come into existence for exchanging large scale of data securely, backed up by their own unique cloud service providers (CSPs). It has, therefore, generated the need for customers to decide the IoT cloud platform to suit their vivid and volatile demands in terms of attributes like security and privacy of data, performance efficiency, cost optimization, and other individualistic properties as per unique user. In spite of the existence of many software solutions for this decision-making problem, they have been proved to be inadequate considering the distinct attributes unique to individual user. This paper proposes a framework to represent the selection of IoT cloud platform as a MCDM problem, thereby providing a solution of optimal efficacy with a particular focus in user-specific priorities to create a unique solution for volatile user demands and agile market trends and needs using optimized distance-based approach (DBA) aided by Fuzzy Set Theory.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom