A Novel Design of CPW Feed Planar Omnidirectional Circularly Polarized Antenna
Author(s) -
Jiawei Yang,
Xi Li,
Lin Yang
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/6695966
Subject(s) - omnidirectional antenna , coaxial antenna , dipole antenna , optics , radiation pattern , turnstile antenna , monopole antenna , planar , physics , axial ratio , antenna measurement , loop antenna , circular polarization , helical antenna , antenna (radio) , electrical engineering , computer science , engineering , microstrip , computer graphics (images)
A novel planar omnidirectional circularly polarized (CP) antenna is presented. The omnidirectional circular polarization characteristics of the planar antenna are the result of the combined effect of a planar quasi-magnetic dipole (PQMD) and a printed electric dipole (PED) in this paper. The CP radiation pattern of the proposed antenna can be achieved by distributing appropriate current amplitude and phase to both elements, respectively. A power divider is used to adjust the amplitude and phase relationship between two basic components. In order to achieve a planar structure, coplanar waveguide (CPW) feed is adopted to feed the quasi-magnetic dipole for the first time. The overall electrical size of antenna is 1.61λ × 0.38λ. Finally, the correctness of our theoretical analysis is verified by processing and measuring this antenna. Through the analysis of the measurement results, we have obtained the following conclusions: the operating bandwidth of the proposed antenna obtained by measurement is from 5.67 to 5.86 GHz, in which the reflection coefficient is less than −10 dB and the axial ratio is less than 3 dB. Within the available bandwidth, the proposed antenna achieves omnidirectional radiation characteristics with a gain between 0.89 and 2.48 dBic.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom