z-logo
open-access-imgOpen Access
Finite Element Analysis of Fluid Flow through the Screen Embedded between Parallel Plates with High Reynolds Numbers
Author(s) -
Abid Ali Memon,
Hammad Alotaibi,
M. Asif Memon,
Kaleemullah Bhatti,
Gul Muhammad Shaikh,
Ilyas Khan,
Abd Allah A. Mousa
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/6695733
Subject(s) - reynolds number , finite element method , mechanics , flow (mathematics) , hele shaw flow , fluid dynamics , physics , mathematics , turbulence , thermodynamics
This paper provides numerical estimation of Newtonian fluid flow past through rectangular channel fixed with screen movable from 10° to 45° by increasing the Reynolds number from 1000 to 10,000. The two-dimensional incompressible Navier Stokes equations are worked out making use of the popular software COMSOL MultiPhysics version 5.4 which implements the Galerkin’s least square scheme to discretize the governing set of equations into algebraic form. In addition, the screen boundary condition with resistance coefficient (2.2) along with resistance coefficient 0.78 is implemented along with slip boundary conditions applied on the wall. We engaged to find and observe the relationship between the optimum velocity, drag force applied by the screen, and pressure occurred in the channel with increasing Reynolds number. Because of the linear relationship between the optimum velocities and the Reynolds number, applying the linear regression method, we will estimate the linear equation so that future prediction and judgment can be done. The validity of results is doing with the asymptomatic solution for stream-wise velocity at the outlet of the channel with screens available in the literature. A nondimensional quantity, i.e., ratio from local to global Reynolds number , is introduced which found stable and varies from -0.5 to 0.5 for the whole problem. Thus, we are in the position to express the general pattern of the velocity of the particles as well as the pressure on the line passing through the middle of the channel and depart some final conclusion at the end.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom