z-logo
open-access-imgOpen Access
Identification of the Potential Biomarkers Involved in the Human Oral Mucosal Wound Healing: A Bioinformatic Study
Author(s) -
Wanchen Ning,
Xiao Jiang,
Zhengyang Sun,
Anthony Chukwuso Ogbuehi,
Wenli Gu,
Aneesha Acharya,
Zhaobi Fang,
Xiongjie Zhu,
Q. Ou,
Muhui Zeng,
Cong Li,
Shiting Hua,
Prabhakar Mujagond,
Xiangqiong Liu,
Yupei Deng,
Hongying Pan,
Shaonan Hu,
Xianda Hu,
Simin Li
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/6695245
Subject(s) - microrna , epigenetics , biology , gene expression , wound healing , transcription factor , gene regulatory network , regulation of gene expression , computational biology , gene , microbiology and biotechnology , genetics
Objective. To identify the key genetic and epigenetic mechanisms involved in the wound healing process after injury of the oral mucosa. Materials and Methods. Gene expression profiling datasets pertaining to rapid wound healing of oral mucosa were identified using the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed to identify differentially expressed genes (DEGs) during oral mucosal wound healing. Next, functional enrichment analysis was performed to identify the biological processes (BPs) and signaling pathways relevant to these DEGs. A protein-protein interaction (PPI) network was constructed to identify hub DEGs. Interaction networks were constructed for both miRNA-target DEGs and DEGs-transcription factors. A DEGs-chemical compound interaction network and a miRNA-small molecular interaction network were also constructed. Results. DEGs were found significantly enriched in several signaling pathways including arachidonic acid metabolism, cell cycle, p53, and ECM-receptor interaction. Hub genes, GABARAPL1, GABARAPL2, HDAC5, MAP1LC3A, AURKA, and PLK1, were identified via PPI network analysis. Two miRNAs, miR-34a-5p and miR-335-5p, were identified as pivotal players in the miRNA-target DEGs network. Four transcription factors FOS, PLAU, BCL6, and RORA were found to play key roles in the TFs-DEGs interaction network. Several chemical compounds including Valproic acid, Doxorubicin, Nickel, and tretinoin and small molecular drugs including atorvastatin, 17β-estradiol, curcumin, and vitamin D3 were noted to influence oral mucosa regeneration by regulating the expression of healing-associated DEGs/miRNAs. Conclusion. Genetic and epigenetic mechanisms and specific drugs were identified as significant molecular mechanisms and entities relevant to oral mucosal healing. These may be valuable potential targets for experimental research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom