z-logo
open-access-imgOpen Access
Automated Atrial Fibrillation Detection Based on Feature Fusion Using Discriminant Canonical Correlation Analysis
Author(s) -
Jingjing Shi,
Chao Chen,
Hui Liu,
Yinglong Wang,
Minglei Shu,
Qing Zhu
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6691177
Subject(s) - artificial intelligence , pattern recognition (psychology) , linear discriminant analysis , computer science , correlation , feature (linguistics) , atrial fibrillation , intraclass correlation , canonical correlation , residual , redundancy (engineering) , cardiology , medicine , mathematics , statistics , algorithm , linguistics , philosophy , geometry , operating system , psychometrics
Atrial fibrillation (AF) is one of the most common cardiovascular diseases, with a high disability rate and mortality rate. The early detection and treatment of atrial fibrillation have great clinical significance. In this paper, a multiple feature fusion is proposed to screen out AF recordings from single lead short electrocardiogram (ECG) recordings. The proposed method uses discriminant canonical correlation analysis (DCCA) feature fusion. It fully takes intraclass correlation and interclass correlation into consideration and solves the problem of computation and information redundancy with simple series or parallel feature fusion. The DCCA integrates traditional features extracted by expert knowledge and deep learning features extracted by the residual network and gated recurrent unit network to improve the low accuracy of a single feature. Based on the Cardiology Challenge 2017 dataset, the experiments are designed to verify the effectiveness of the proposed algorithm. In the experiments, the F1 index can reach 88%. The accuracy, sensitivity, and specificity are 91.7%, 90.4%, and 93.2%, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom