z-logo
open-access-imgOpen Access
Influence of External Jet on Hydraulic Performance and Flow Field Characteristics of Water Jet Propulsion Pump Device
Author(s) -
Jinxin Wu,
Li Cheng,
Can Luo,
Chuan Wang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6690910
Subject(s) - jet (fluid) , water jet , jet propulsion , propulsion , flow (mathematics) , injector , field (mathematics) , mechanics , aerospace engineering , hydraulic machinery , environmental science , marine engineering , mechanical engineering , materials science , engineering , physics , nozzle , mathematics , pure mathematics
Water jet propulsion technology has broad application prospects in the field of ships, and water jet technology is a kind of high and new technology that is booming and has a wide range of applications. However, there are a few studies on the effect of the external jet on the performance of the water jet propulsion pump, and it is urgent to carry out this research. In this paper, the standard k-ε turbulence model is used to carry out the numerical simulation study of the influence of the external jet on the hydraulic performance and flow field characteristics of the water jet propulsion pump device. This paper discusses the selection of calculation models, the division of grids and the setting of turbulence models, and an in-depth analysis of the calculation results. The research results show that when a high-speed water jet enters a moving water body, it will cause turbulence in the moving water body. With the increase of jet flow, the turbulence phenomenon will be improved. The average velocity of the outlet section of the nozzle is consistent with the change of the total pressure. The average vortex gradually decreases, the turbulent kinetic energy changes little, the turbulence dissipation first decreases and then increases, and the nozzle axial force changes more and more. The axial force and thrust of the device will obviously increase when the two water streams merge and spray, and they will increase with the increase of the jet flow rate. By revealing the influence mechanism of the external jet on the water jet propulsion pump device, it can provide a theoretical basis and guiding direction for further optimizing the hydraulic performance of the entire device.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom