z-logo
open-access-imgOpen Access
iT3SE-PX: Identification of Bacterial Type III Secreted Effectors Using PSSM Profiles and XGBoost Feature Selection
Author(s) -
Chenchen Ding,
Haitao Han,
Qianyue Li,
Yang Xiaoxia,
Taigang Liu
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6690299
Subject(s) - support vector machine , feature selection , artificial intelligence , classifier (uml) , computer science , machine learning , effector , benchmark (surveying) , pattern recognition (psychology) , biology , geodesy , geography , microbiology and biotechnology
Identification of bacterial type III secreted effectors (T3SEs) has become a popular research topic in the field of bioinformatics due to its crucial role in understanding host-pathogen interaction and developing better therapeutic targets against the pathogens. However, the recognition of all effector proteins by using traditional experimental approaches is often time-consuming and laborious. Therefore, development of computational methods to accurately predict putative novel effectors is important in reducing the number of biological experiments for validation. In this study, we proposed a method, called iT3SE-PX, to identify T3SEs solely based on protein sequences. First, three kinds of features were extracted from the position-specific scoring matrix (PSSM) profiles to help train a machine learning (ML) model. Then, the extreme gradient boosting (XGBoost) algorithm was performed to rank these features based on their classification ability. Finally, the optimal features were selected as inputs to a support vector machine (SVM) classifier to predict T3SEs. Based on the two benchmark datasets, we conducted a 100-time randomized 5-fold cross validation (CV) and an independent test, respectively. The experimental results demonstrated that the proposed method achieved superior performance compared to most of the existing methods and could serve as a useful tool for identifying putative T3SEs, given only the sequence information.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom