z-logo
open-access-imgOpen Access
Prognostics and Health Management System for Electric Vehicles with a Hierarchy Fusion Framework: Concepts, Architectures, and Methods
Author(s) -
Cheng Wang,
Tongtong Ji,
Feng Mao,
Zhenpo Wang,
Zhiheng Li
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/6685900
Subject(s) - prognostics , factory (object oriented programming) , reliability engineering , engineering , fault (geology) , electric vehicle , key (lock) , fault detection and isolation , hierarchy , computer science , computer security , electrical engineering , market economy , power (physics) , physics , actuator , quantum mechanics , seismology , economics , programming language , geology
The prognostics and health management (PHM) of electric vehicles is an important guarantee for their safety and long-term development. At present, there are few studies researching about life cycle PHM system of electric vehicles. In this paper, we first summarize the research progress and key methods of PHM. Then, we propose a three-level PHM system with a hierarchy fusion architecture for electric vehicles based on the structure, data source of them. In the PHM system, we introduce a database consisting of the factory data, real-time data, and detection data. The electric vehicle's factory parameters are used for determining the life curve of the electric vehicle and its components, the real-time data are used for predicting the remaining useful lifetime (RUL) of the electric vehicle and its components, and the detection data are used for fault diagnosis. This health management database is established to help make condition-based maintenance decisions for electric vehicles. In this way, a complete electric vehicle PHM system is formed, which can realize the whole-life-cycle life prediction and fault diagnosis of electric vehicles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom