z-logo
open-access-imgOpen Access
KecNet: A Light Neural Network for Arrhythmia Classification Based on Knowledge Reinforcement
Author(s) -
Peng Lu,
Yang Gao,
Hao Xi,
Yabin Zhang,
Chao Gao,
Bing Zhou,
Hongpo Zhang,
Liwei Chen,
Xiaobo Mao
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/6684954
Subject(s) - interpretability , computer science , artificial intelligence , artificial neural network , deep learning , mobile device , robustness (evolution) , cardiac arrhythmia , machine learning , wearable computer , wearable technology , data mining , embedded system , medicine , biochemistry , chemistry , atrial fibrillation , cardiology , gene , operating system
Acquiring electrocardiographic (ECG) signals and performing arrhythmia classification in mobile device scenarios have the advantages of short response time, almost no network bandwidth consumption, and human resource savings. In recent years, deep neural networks have become a popular method to efficiently and accurately simulate nonlinear patterns of ECG data in a data-driven manner but require more resources. Therefore, it is crucial to design deep learning (DL) algorithms that are more suitable for resource-constrained mobile devices. In this paper, KecNet, a lightweight neural network construction scheme based on domain knowledge, is proposed to model ECG data by effectively leveraging signal analysis and medical knowledge. To evaluate the performance of KecNet, we use the Association for the Advancement of Medical Instrumentation (AAMI) protocol and the MIT-BIH arrhythmia database to classify five arrhythmia categories. The result shows that the ACC, SEN, and PRE achieve 99.31%, 99.45%, and 98.78%, respectively. In addition, it also possesses high robustness to noisy environments, low memory usage, and physical interpretability advantages. Benefiting from these advantages, KecNet can be applied in practice, especially wearable and lightweight mobile devices for arrhythmia classification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom