z-logo
open-access-imgOpen Access
The Circadian Clock Regulates the Expression of the Nuclear Factor Erythroid 2-Related Factor 2 in Acute Kidney Injury following Myocardial Ischemia-Reperfusion in Diabetic Rat
Author(s) -
Chong Dong,
Cheng Zeng,
Li Du,
Qian Sun
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/6683779
Subject(s) - medicine , circadian rhythm , endocrinology , circadian clock , zeitgeber , creatinine , lipocalin , kidney , oxidative stress
Cardiac surgery-associated acute kidney injury (AKI) is a serious and frequent complication with poor prognosis, and disruption in circadian rhythm shall adversely influence cardiovascular and renal functions via oxidative stress mechanisms. However, the role of circadian clock genes (circadian locomotor output cycle kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1)) and its interaction with nuclear factor erythroid 2-related factor 2 (Nrf2) in AKI following myocardial ischemia-reperfusion (MIR) in the diabetic rat has not yet been explored. In this study, rats were divided into the sham (S) group, MIR (M) group, diabetic (D) group, and diabetic+MIR (DM) group. At light (zeitgeber time (ZT) 0) and dark time points (ZT12), rat MIR model was established by occlusion of the left anterior descending coronary artery for 30 min followed by 2 -hour reperfusion, and then renal injury was evaluated. The renal histological changes in the DM group were significantly high compared to other groups; serum creatinine, blood urea nitrogen, and neutrophil gelatinase-associated lipocalin levels, as well as malondialdehyde and 8-iso-prostaglandin-F2α levels in renal tissues of M ZT12 and DM ZT12 subgroups, were significantly higher than those of M ZT0 and DM ZT0 subgroups, individually indicating increased oxidative stress at a dark cycle. Further, Nrf2 protein accumulated in a circadian manner with decreasing levels at night in the DM and M groups. In conclusion, renal injury following MIR was exacerbated in the diabetic rat at night through molecular mechanisms involving transcriptional control of the circadian clock on light-dark activation of Nrf2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom