z-logo
open-access-imgOpen Access
Forecasting Daily and Monthly Reference Evapotranspiration in the Aidoghmoush Basin Using Multilayer Perceptron Coupled with Water Wave Optimization
Author(s) -
Fatemeh Sayyahi,
Saeed Farzin,
Hojat Karami
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6683759
Subject(s) - evapotranspiration , multilayer perceptron , structural basin , environmental science , hydrology (agriculture) , artificial neural network , computer science , geology , artificial intelligence , biology , geomorphology , ecology , geotechnical engineering
The aim of this study is to evaluate the ability of soft computing models including multilayer perceptron- (MLP-) water wave optimization (MLP-WWO), MLP-particle swarm optimization (MLP-PSO), and MLP-genetic algorithm (MLP-GA), to simulate the daily and monthly reference evapotranspiration (ET) at the Aidoghmoush basin (Iran). Principal component analysis (PCA) was used to find the best input combination including the lagged ETs. According to the results, the ET values with 1, 2, and 3 (days) lags as well as those with 1, 2, and 3 (months) lags were the most effective variables in the formation of the PCs. The total variance proportion of inputs and eigenvalues was used to identify the most important variables. The accuracy of the models was assessed based on multiple statistical indices such as the mean absolute error (MAE), Nash–Sutcliff efficiency (NSE), and percent bias (PBIAS). The results showed that the performance of hybrid MLP models was better than that of the standalone MLP. The findings confirmed that the MLP-WWO could precisely predict ET.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom