z-logo
open-access-imgOpen Access
PAR2 Deficiency Induces Mitochondrial ROS Generation and Dysfunctions, Leading to the Inhibition of Adipocyte Differentiation
Author(s) -
Yeo Jin Park,
Bonggi Lee,
Dae Hyun Kim,
EunBin Kwon,
Younghoon Go,
Sugyeong Ha,
MinKyeong Lee,
Hak Sun Yu,
Hae Young Chung
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/6683033
Subject(s) - adipocyte , microbiology and biotechnology , mitochondrion , reactive oxygen species , biology , endocrinology , chemistry , medicine , adipose tissue
Protease-activated receptor 2 (PAR2) is a member of G-protein-coupled receptors and affects ligand-modulated calcium signaling. Although PAR2 signaling promotes obesity and adipose tissue inflammation in high fat- (HF-) fed conditions, its role in adipocyte differentiation under nonobesogenic conditions needs to be elucidated. Here, we used several tissues and primary-cultured adipocytes of mice lacking PAR2 to study its role in the development of adipose tissues. C57BL/6J mice with PAR2 deficiency exhibited a mild lipodystrophy-like phenotype in a chow diet-fed condition. When adipocyte differentiation was examined using primary-cultured preadipocytes, PAR2 deficiency led to a notable decrease in adipocyte differentiation and related protein expression, and PAR2 agonist treatment elevated adipocyte differentiation. Regarding the mechanism, PAR2-deficient preadipocytes exhibited impaired mitochondrial energy consumption. Further studies indicated that calcium-related signaling pathways for mitochondrial biogenesis are disrupted in the adipose tissues of PAR2-deficient mice and PAR2-deficient preadipocytes. Also, a PAR2 antagonist elevated mitochondrial reactive oxygen species and reduced the MitoTracker fluorescent signal in preadipocytes. Our studies revealed that PAR2 is important for the development of adipose tissue under basal conditions through the regulation of mitochondrial biogenesis and adipocyte differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom