In Vitro Investigation of the Cytotoxic Activity of Emodin 35 Derivative on Multiple Myeloma Cell Lines
Author(s) -
Jing Zheng,
Yingyu Chen,
ZhiHong Zheng,
Yanxin Chen,
Yujuan Chai,
Wenfeng Wang,
Tetsuya Asakawa,
Jianda Hu
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/6682787
Subject(s) - bortezomib , pi3k/akt/mtor pathway , chemistry , apoptosis , emodin , viability assay , propidium iodide , protein kinase b , cancer research , annexin , mtt assay , multiple myeloma , programmed cell death , biochemistry , medicine , immunology
Background Bortezomib is used for treating multiple myeloma (MM); however, it has considerable adverse effects. Emodin has been reported to exhibit inhibitory effects on MM cell lines. We investigated the efficacy of emodin 35 (E35), an emodin derivative, using U266 and MM1s cell lines in treating MM and the efficacy of combining bortezomib and E35.Methods MTT assays were used to observe the effects of E35 on MM cell growth. The effects on cellular apoptosis were then observed using Annexin V/propidium iodide (PI) staining assay. The expression of apoptosis-related genes, including the caspase family, was examined. The efficacy of combining bortezomib and E35 was investigated by examining the expression of the Akt/mTOR/4EBP1 signaling pathway-related proteins.Results We report that E35 inhibited the growth of U266 and MM1s cells by inducing cellular apoptosis. Moreover, E35 downregulated the expression of apoptosis-related genes and suppressed the phosphorylation of Akt/mTOR/4EBP1 signaling pathway-related genes, thus exhibiting synergistic effects with bortezomib. All observed effects were dose-dependent.Conclusion The results showed that E35 exhibited cytotoxic effects in MM cell lines in protein levels. Thus, E35, particularly in combination with bortezomib, may be considered as a promising treatment for MM; however, this requires further investigation in vivo .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom