z-logo
open-access-imgOpen Access
A PCB Electronic Components Detection Network Design Based on Effective Receptive Field Size and Anchor Size Matching
Author(s) -
Jing Li,
Weiye Li,
Yingqian Chen,
Jinan Gu
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6682710
Subject(s) - receptive field , computer science , matching (statistics) , field size , field (mathematics) , artificial intelligence , pattern recognition (psychology) , statistics , mathematics , optics , physics , pure mathematics , imaging phantom
Vision-based recognizing and positioning of electronic components on the PCB (printed circuit board) can improve the quality inspection efficiency of electronic products in the manufacturing process. With the improvement of the design and the production process, the electronic components on the PCB show the characteristics of small sizes and similar appearances, which brings challenges to visual object detection. This paper designs a real-time electronic component detection network through effective receptive field size and anchor size matching in YOLOv3. We make contributions in the following three aspects: (1) realizing the calculation and visualization of the effective receptive field size of the different depth layers of the CNN (convolutional neural network) based on gradient backpropagation; (2) proposing a modular YOLOv3 composition strategy that can be added and removed; and (3) designing a lightweight and efficient detection network by effective receptive field size and anchor size matching algorithm. Compared with the Faster-RCNN (regions with convolutional neural network) features, SSD (single-shot multibox detectors), and original YOLOv3, our method not only has the highest detection mAP (mean average precision) on the PCB electronic component dataset, which is 95.03%, the smallest parameter size of the memory, about 1/3 of the original YOLOv3 parameter amount, but also the second-best performance on FLOPs (floating point operations).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom