Identifying the Key Nodes and Sections of Urban Roadway Network Based on GPS Trajectory Data
Author(s) -
Jing Wang,
Chunjiao Dong,
Chunfu Shao,
Shichen Huang,
Wang Shuang
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/6682063
Subject(s) - key (lock) , global positioning system , beijing , trajectory , computer science , scale (ratio) , dual (grammatical number) , real time computing , topology (electrical circuits) , data mining , computer network , geography , engineering , china , telecommunications , cartography , art , physics , computer security , archaeology , literature , electrical engineering , astronomy
This paper proposes a novel approach to identify the key nodes and sections of the roadway network. The taxi-GPS trajectory data are regarded as mobile sensor to probe a large scale of urban traffic flows in real time. First, the urban primary roadway network model and dual roadway network model are developed, respectively, based on the weighted complex network. Second, an evaluation system of the key nodes and sections is developed from the aspects of dynamic traffic attributes and static topology. At the end, the taxi-GPS data collected in Xicheng District of Beijing, China, are analyzed. A comprehensive analysis of the spatial-temporal changes of the key nodes and sections is performed. Moreover, the repetition rate is used to evaluate the performance of the identification algorithm of key nodes and sections. The results show that the proposed method realizes the expression of topological structure and dynamic traffic attributes of the roadway network simultaneously, which is more practicable and effective in a large scale.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom