Disrupted Resting-State Functional Connectivity between the Dorsal Attention, Default Mode, and Frontoparietal Networks in Nonorganic Gastrointestinal Disorder Patients with Spleen Deficiency Syndrome
Author(s) -
Yanzhe Ning,
Wenbin Jia,
Dongqing Yin,
Xinzi Liu,
Hong Zhu,
Hongxiao Jia
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/6681903
Subject(s) - default mode network , functional connectivity , resting state fmri , dorsum , neuroscience , medicine , psychology , anatomy
Spleen deficiency syndrome (SDS), a common clinical syndrome of traditional Chinese medicine, is manifested with digestive symptoms and cognitive impairments. However, the cognitive neural mechanism in brain networks of SDS still remained unclear. Our aim was to investigate the changes between the default mode, dorsal attention, and frontoparietal networks in SDS.Methods Twenty nonorganic gastrointestinal disorder (NOGD) patients with SDS and eighteen healthy controls were enrolled to attend functional magnetic resonance imaging scan and participated a continuous performance test (CPT) before scanning.Results Compared with healthy controls, NOGD patients with SDS showed the significantly increased functional connectivity (FC) between dorsal attention network (DAN) and left frontal-parietal control network (LFPN) and significantly decreased FC between LFPN and default mode network (DMN). The functional network connectivity analysis showed positive correlation coefficients between the DAN and LFPN and DAN and DMN as well as negative correlation between LFPN and DMN in NOGD patients with SDS compared with healthy controls. Correlation analysis revealed that the increased FC between LFPN and DAN was positively correlated with 4-digitnumber reaction time mean (RTM) and 3-digitnumber RTM.Conclusion Our study may provide novel insights into the relationship among the DMN, DAN, and FPN in NOGD patients with SDS to deepen our understanding of the neuropsychological mechanisms of SDS.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom