z-logo
open-access-imgOpen Access
Intelligent Extremum Surrogate Modeling Framework for Dynamic Probabilistic Analysis of Complex Mechanism
Author(s) -
Jiaqi Liu,
Yunwen Feng,
Xiaofeng Xue,
Cheng Lu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6681489
Subject(s) - reliability (semiconductor) , probabilistic logic , particle swarm optimization , computer science , process (computing) , surrogate model , artificial neural network , monte carlo method , nonlinear system , mathematical optimization , engineering , algorithm , artificial intelligence , machine learning , mathematics , power (physics) , statistics , physics , quantum mechanics , operating system
The reliability analysis of complex mechanisms involves time-varying, high-nonlinearity, and multiparameters. The traditional way is to employ Monte Carlo (MC) simulation to achieve the reliability level, but this method consumes too much computing resources and is even computationally intractable. To improve the efficiency and accuracy of dynamic probabilistic analysis of complex mechanisms, an intelligent extremum surrogate modeling framework (IESMF, short for) is proposed based on extremum response surface method (ERSM), combined with artificial neural network (ANN) method and an improved optimize particle swarm optimization (PSO) method. Hereinto, the ERSM is used to simplify the dynamic process of output response to the extremum value of transient analysis; ANN is applied to establish a mathematical model between input variables and response, and the improved PSO method is utilized in search of initial weights and thresholds of the model. The effectiveness of the IESMF is demonstrated to perform the Rack-and-pinion steering mechanism (RPSM) reliability analysis. The results show that when the allowable value of gear root stress is equal to 850 MPa, the RPSM has a reliability degree of 0.9971. Through the validation process, it is illustrated that IESMF is accurate and efficient in dynamic probabilistic analysis of complex mechanisms, and its comprehensive performance is better than the MC method and ERSM. The research effort offers new ideas for the reliability estimation of a complex mechanism, thus enriching the method and theory of mechanical reliability design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom