z-logo
open-access-imgOpen Access
Integrated Optimization of Pipe Routing and Clamp Layout for Aeroengine Using Improved MOALO
Author(s) -
Qiang Liu,
Zhi Li Tang,
Huijuan Liu,
Jiapeng Yu,
Hui Ma,
Yonghua Yang
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/6681322
Subject(s) - routing (electronic design automation) , clamp , path (computing) , engineering , constraint (computer aided design) , computer science , mathematical optimization , mechanical engineering , mathematics , electronic engineering , clamping , programming language
Pipe routing and clamp layout for aeroengine are NP-hard computational problems and complex engineering design processes. Besides space constraints and engineering rules, there are assembly constraints between pipes and clamps, which usually lead to repeatedly modifications between pipe routing and clamp layout designs. In order to solve the problems of assembly constraints and design coupling between them, an integrated optimization method for pipe routing and clamp layout is proposed. To this end, the MOALO (multiobjective ant lion optimizer) algorithm is modified by introducing the levy flight strategy to improve the global search performance and convergence speed, and it is further used as a basic computation tool. The integrated optimization method takes pipe and clamp as a whole system and then solves the Pareto solution set of pipe-clamp layouts by using improved MOALO, where the pipe path, clamp position, and rotation angle are selected as decision variables and are further optimized. Inspired by engineering experience, a clamp-based pipe path mechanism considering regular nodes is established to deal with assembly constraint problem. The proposed method comprehensively considers engineering rules of pipe routing and clamp layout and realizes the overall layout optimization of pipe-clamp system while guaranteeing the assembly constraints between pipes and clamps. Finally, some numerical computations and routing examples are conducted to demonstrate the feasibility and effectiveness of the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom