Feature Selection of the Rich Model Based on the Correlation of Feature Components
Author(s) -
Shunhao Jin,
Fenlin Liu,
Chunfang Yang,
Yuanyuan Ma,
Yuan Liu
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6680528
Subject(s) - steganalysis , feature selection , pattern recognition (psychology) , computer science , feature (linguistics) , artificial intelligence , dimensionality reduction , curse of dimensionality , feature extraction , jpeg , feature vector , principal component analysis , data mining , steganography , image (mathematics) , linguistics , philosophy
Currently, the popular Rich Model steganalysis features usually contain a large number of redundant feature components which may bring “curse of dimensionality” and large computation cost, but the existing feature selection methods are difficult to effectively reduce the dimensionality when there are many strongly correlated effective feature components. This paper proposes a novel selection method for Rich Model steganalysis features. First, the separability of each feature component in the submodels of Rich Model is measured based on the Fisher criterion, and the feature components are sorted in the descending order based on the separability. Second, the correlation coefficient between any two feature components in each submodel is calculated, and feature selection is performed according to the Fisher value of each component and the correlation coefficients. Finally, the selected submodels are combined as the final steganalysis feature. The results show that the proposed feature selection method can effectively reduce the dimensionalities of JPEG domain and spatial domain Rich Model steganalysis features without affecting the detection accuracies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom