z-logo
open-access-imgOpen Access
The Minimum Merrifield–Simmons Index of Unicyclic Graphs with Diameter at Most Four
Author(s) -
Kun Zhao,
Shangzhao Li,
Shaojun Dai
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/6680242
Subject(s) - mathematics , combinatorics , vertex (graph theory) , graph , discrete mathematics
The Merrifield–Simmons index i G of a graph G is defined as the number of subsets of the vertex set, in which any two vertices are nonadjacent, i.e., the number of independent vertex sets of G . In this paper, we determine the minimum Merrifield–Simmons index of unicyclic graphs with n vertices and diameter at most four.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom