Stability and Bifurcation Analysis of a Discrete Singular Bioeconomic System
Author(s) -
Qamar Din,
A. M. Yousef,
A. A. Elsadany
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/6679161
Subject(s) - discretization , mathematics , hopf bifurcation , lyapunov exponent , chaotic , bifurcation , stability (learning theory) , control theory (sociology) , saddle node bifurcation , bifurcation diagram , mathematical analysis , computer science , nonlinear system , control (management) , physics , quantum mechanics , artificial intelligence , machine learning
The main concern of this paper is to discuss stability and bifurcation analysis for a class of discrete predator-prey interaction with Holling type II functional response and harvesting effort. Firstly, we establish a discrete singular bioeconomic system, which is based on the discretization of a system of differential algebraic equations. It is shown that the discretized system exhibits much richer dynamical behaviors than its corresponding continuous counterpart. Our investigation reveals that, in the discretized system, two types of bifurcations (i.e., period-doubling and Neimark–Sacker bifurcations) can be studied; however, the dynamics of the continuous model includes only Hopf bifurcation. Moreover, the state delayed feedback control method is implemented for controlling the chaotic behavior of the bioeconomic model. Numerical simulations are presented to illustrate the theoretical analysis. The maximal Lyapunov exponents (MLE) are computed numerically to ensure further dynamical behaviors and complexity of the model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom