z-logo
open-access-imgOpen Access
Collaborative Product Portfolio Design Based on the Approach of Multichoice Goal Programming
Author(s) -
Shengyuan Wang,
WanMing Chen,
Ying Liu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6678533
Subject(s) - mathematical optimization , portfolio , computer science , population , goal programming , product (mathematics) , maximization , new product development , portfolio optimization , multi objective optimization , mathematics , economics , demography , geometry , management , sociology , financial economics
Product portfolio optimization is a typical multiobjective problem. The multichoice goal programming method becomes a popular means of resolving multiobjective decision problems. However, the classic multichoice goal programming method treats the product portfolio optimization in isolation and does not consider the mutual influence between portfolio products. Researchers should consider the interaction between products in portfolio optimization so that they can be adjusted to “real world” problems. The interaction between products can be explained by population dynamics. Logistic model is a classical method to analyze the population interaction. The equilibrium point of logistic model can show the ideal state of product population coordinated development. The combination of logistic and multichoice goal programming method is an effective approach to analyze the interaction of product portfolio. This paper therefore proposes a new alternative method to formulate the multiobjective problem and also uses an illustrative example to demonstrate the usefulness of the proposed method. The comparative analysis of model optimization results shows that logistic multichoice goal programming model can take into account resource constraints, product collaboration, and output maximization. Logistic multichoice goal programming model shows good performance in the aspects of operation complexity, operation time, sensitivity analysis, and collaborative entropy evaluation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom