An Interpolation Theorem for Quasimartingales in Noncommutative Symmetric Spaces
Author(s) -
Congbian Ma,
Zhao Guo-xi
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/6678150
Subject(s) - noncommutative geometry , interpolation (computer graphics) , mathematics , pure mathematics , mathematical analysis , computer science , artificial intelligence , image (mathematics)
Let E be a separable symmetric space on 0 , ∞ and E M the corresponding noncommutative space. In this paper, we introduce a kind of quasimartingale spaces which is like but bigger than E M and obtain the following interpolation result: let E ^ M be the space of all bounded E M -quasimartingales and 1 < p < p E < q E < q < ∞ . Then, there exists a symmetric space F on 0 , ∞ with nontrivial Boyd indices such that E ^ M = L ^ p M , L ^ q M F , K .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom