z-logo
open-access-imgOpen Access
On the Analytical Solutions of the Forced Damping Duffing Equation in the Form of Weierstrass Elliptic Function and its Applications
Author(s) -
S. A. El-Tantawy,
Alvaro H. Salas,
M.R. Alharthi
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6678102
Subject(s) - duffing equation , elliptic function , mathematical analysis , mathematics , constant (computer programming) , pendulum , physics , nonlinear system , quantum mechanics , computer science , programming language
In this study, a novel analytical solution to the integrable undamping Duffing equation with constant forced term is obtained. Also, a new approximate analytical (semianalytical) solution for the nonintegrable linear damping Duffing oscillator with constant forced term is reported. The analytical solution is given in terms of the Weierstrass elliptic function with arbitrary initial conditions. With respect to it, the semianalytical solution is constructed depending on a new ansatz and the exact solution of the standard Duffing equation (in the absence of both damping and forced terms). A comparison between the obtained solutions and the Runge–Kutta fourth-order (RK4) is carried out. Moreover, some complicated oscillator equations such as the constant forced damping pendulum equation, forced damping cubic-quintic Duffing equation, and constant forced damping Helmholtz–Duffing equation are reduced to the forced damping Duffing oscillator, in which its solution is known. As a practical application, the proposed techniques are applied to investigate the characteristics behavior of the signal oscillations arising in the RLC circuit with externally applied voltage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom