z-logo
open-access-imgOpen Access
One-Shot M-Array Pattern Based on Coded Structured Light for Three-Dimensional Object Reconstruction
Author(s) -
Xiaojun Jia,
Zihao Liu
Publication year - 2021
Publication title -
journal of control science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 18
eISSN - 1687-5257
pISSN - 1687-5249
DOI - 10.1155/2021/6676704
Subject(s) - decoding methods , artificial intelligence , computer science , encoding (memory) , pattern recognition (psychology) , object (grammar) , computer vision , structured light , convolutional neural network , convolution (computer science) , key (lock) , artificial neural network , algorithm , computer security
Pattern encoding and decoding are two challenging problems in a three-dimensional (3D) reconstruction system using coded structured light (CSL). In this paper, a one-shot pattern is designed as an M-array with eight embedded geometric shapes, in which each 2 × 2 subwindow appears only once. A robust pattern decoding method for reconstructing objects from a one-shot pattern is then proposed. The decoding approach relies on the robust pattern element tracking algorithm (PETA) and generic features of pattern elements to segment and cluster the projected structured light pattern from a single captured image. A deep convolution neural network (DCNN) and chain sequence features are used to accurately classify pattern elements and key points (KPs), respectively. Meanwhile, a training dataset is established, which contains many pattern elements with various blur levels and distortions. Experimental results show that the proposed approach can be used to reconstruct 3D objects.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom