z-logo
open-access-imgOpen Access
The Influence of Walking Height and Width on the Gait
Author(s) -
Heng Ma,
Yuanwen Min,
Fangfang Wu,
Gao Xianglin,
Xiujuan Ma,
Jie Yao,
Chao Ma,
Xiaoliu Li
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/6675809
Subject(s) - forefoot , heel , gait , physical medicine and rehabilitation , foot (prosody) , ground reaction force , preferred walking speed , gait analysis , plantar pressure , weight bearing , orthodontics , medicine , kinematics , physics , pressure sensor , surgery , anatomy , linguistics , philosophy , thermodynamics , classical mechanics , complication
Walking stability is an important factor that is related to working accidents at height. The understanding of the relationship between walking stability and walking conditions remains an unmet need. Therefore, this study aimed to investigate the effect of path height, width, and asymmetric conditions on the pressure and time information of the foot-ground interaction during walking. 12 subjects were required to walk at two height, three width, and asymmetric conditions. Plantar pressures during walking were measured with the F-scan insole sensors. The total pressures were normalized with body weight, and the temporal parameters were normalized with stance time. When the walking height increased, the plantar pressure at the “heel strike” phase did not change significantly, while that at “heel rise” and “toe off” phases significantly increased, and the “heel rise” occurred earlier, indicating a greater foot-ground interaction at the forefoot part of the sole. As the path width increased from 0.6 m to 1.2 m, the foot-ground interaction as well as the asymmetric effect approached to that of overground walking. The findings could help improve the risk assessment and footwear design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom