z-logo
open-access-imgOpen Access
Preliminary Testing to Determine the Best Process Parameters for Polymer Laser Sintering of a New Polypropylene Polymeric Material
Author(s) -
Fredrick M. Mwania,
Maina Maringa,
Jakobus. G. van der Walt
Publication year - 2021
Publication title -
advances in polymer technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.523
H-Index - 44
eISSN - 1098-2329
pISSN - 0730-6679
DOI - 10.1155/2021/6674890
Subject(s) - materials science , selective laser sintering , polypropylene , composite material , laser power scaling , laser , polymer , ultimate tensile strength , tensile testing , diamond , sintering , optics , physics
Polymer laser sintering is an elaborate additive manufacturing technique because it is subject to process parameters and material properties. In this regard, each polymeric material necessitates a different set of process conditions. To this end, testing was done to determine the most suitable process parameters for a new commercially available polymer (Laser PP CP 60), from Diamond Plastics GmbH. It was established that the material requires slightly different settings from those provided by the supplier for the values for the removal chamber temperature, building chamber temperatures, and laser power to achieve the best mechanical properties (ultimate tensile strength). The preliminary testing indicates that the process parameters that yielded the best mechanical properties for the laser PP CP 60 powder were 125°C, 125°C, 0.15 mm, 250 μm, 4500 mm/s, 34.7 W, 1500 mm/s, and 21.3 W for the removal chamber temperature, building chamber temperature layer thickness, hatch distance, scanning speed fill, laser power fill, scanning speed contour, and laser power contour, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom