z-logo
open-access-imgOpen Access
Study of Proton, Deuteron, and Triton at 54.4 GeV
Author(s) -
M. Waqas,
Guang-Xiong Peng
Publication year - 2021
Publication title -
advances in high energy physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 49
eISSN - 1687-7365
pISSN - 1687-7357
DOI - 10.1155/2021/6674470
Subject(s) - physics , kinetic energy , tsallis statistics , deuterium , nuclear physics , transverse plane , proton , spectral line , momentum (technical analysis) , transverse mass , flow (mathematics) , atomic physics , hadron , mechanics , classical mechanics , statistical physics , quantum mechanics , structural engineering , finance , rapidity , engineering , economics
Transverse momentum spectra of proton, deuteron, and triton in gold-gold (Au-Au) collisions at 54.4 GeV are analyzed in different centrality bins by the blast wave model with Tsallis statistics. The model results are approximately in agreement with the experimental data measured by STAR Collaboration in special transverse momentum ranges. We extracted the kinetic freeze-out temperature, transverse flow velocity, and freeze-out volume from the transverse momentum spectra of the particles. It is observed that the kinetic freeze-out temperature is increasing from the central to peripheral collisions. However, the transverse flow velocity and freeze-out volume decrease from the central to peripheral collisions. The present work reveals the mass dependent kinetic freeze-out scenario and volume differential freeze-out scenario in collisions at STAR Collaboration. In addition, parameter characterizes the degree of nonequilibrium of the produced system, and it increases from the central to peripheral collisions and increases with mass .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom