z-logo
open-access-imgOpen Access
Comfort Evaluation of Double-Sided Catwalk for Suspension Bridge due to Wind-Induced Vibration
Author(s) -
Zhiguo Li,
Fan Chen,
Cheng Pei,
Jiaming Zhang,
Xin Chen
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6673816
Subject(s) - aeroelasticity , structural engineering , engineering , suspension (topology) , rope , vibration , annoyance , nonlinear system , acoustics , mathematics , physics , aerodynamics , aerospace engineering , quantum mechanics , homotopy , pure mathematics , loudness
Buffeting response of a double-sided catwalk designed for Maputo Bridge was investigated considering wind load nonlinearity, geometric nonlinearity, and self-excited forces. Buffeting analysis was conducted in time domain using an APDL-developed program in ANSYS, and the results were compared with the buffeting response under the traditional linear method. The wind field was simulated using the spectra representation method. Aerostatic coefficients were obtained from section model wind tunnel test. Parameter study has been carried out to investigate the effects of cross bridge interval and the gantry rope diameter on buffeting response. Referring to the ISO 2631-1(1997) standard and the annoyance rate model, the comfort of catwalk due to wind-induced vibration was evaluated. The results indicate that traditional linear calculation methods will underestimate the buffeting response of the catwalk, and enlarging the gantry rope size as well as decreasing the cross bridge interval would increase the comfort level. Moreover, the effect of gantry rope diameter was obvious than that of cross bridge interval. Annoyance rate model can evaluate the comfort level quantitatively compared to the ISO standard.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom