Revisiting the Benefits of Combining Data of a Different Nature: Strategic Forecasting of New Mode Alternatives
Author(s) -
Luis A. Guzmán,
Julián Arellana,
Victor A. Cantillo-Garcia,
Juan de Dios Ortúzar
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/6672961
Subject(s) - mode (computer interface) , computer science , operations research , preference , survey data collection , service (business) , data science , business , economics , engineering , marketing , microeconomics , mathematics , operating system , statistics
We revisit the practice of combining revealed (RP) and stated preference (SP) data (i.e., the data enrichment, DE, paradigm) in discrete choice models using secondary data obtained from emerging sources; these facilitate access to massive information about travel choices and can be used to improve transport models. Even though the benefits of the DE paradigm have been known for years, there is a large gap between the state of practice and the state of the art, particularly in Global South countries (but also in many industrialized nations). We use a SP dataset considering two new transport alternatives (train and metro) and a RP dataset based on a large mobility survey in Bogotá, Colombia, complemented with fairly precise level-of-service data obtained using GIS utilities and the Distance Matrix API by Google. Our results allow us to discuss good practice, identify barriers and challenges to the paradigm’s application, and draw recommendations for forecasting the demand for new alternatives using joint RP and SP data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom