z-logo
open-access-imgOpen Access
Time-Frequency Analysis and Application of a Vibration Signal of Tunnel Excavation Blasting Based on CEEMD-MPE-HT
Author(s) -
Chenyang Ma,
Li Wu,
Miao Sun,
Qing Yuan
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6672942
Subject(s) - hilbert–huang transform , vibration , engineering , structural engineering , frequency band , acoustics , mode (computer interface) , natural frequency , time–frequency analysis , noise (video) , white noise , computer science , physics , electrical engineering , artificial intelligence , telecommunications , image (mathematics) , operating system , filter (signal processing) , antenna (radio)
The traditional empirical mode decomposition method cannot accurately extract the time-frequency characteristic parameters contained in the noisy seismic monitoring signals. In this paper, the time-frequency analysis model of CEEMD-MPE-HT is established by introducing the multiscale permutation entropy (MPE), combining with the optimized empirical mode decomposition (CEEMD) and Hilbert transform (HT). The accuracy of the model is verified by the simulation signal mixed with noise. Based on the project of Loushan two-to-four in situ expansion tunnel, a CEEMD-MPE-HT model is used to extract and analyze the time-frequency characteristic parameters of blasting seismic signals. The results show that the energy of the seismic wave signal is mainly concentrated in the frequency band above 100 Hz, while the natural vibration frequency of the adjacent existing tunnel is far less than this frequency band, and the excavation blasting of the tunnel will not cause the resonance of the adjacent existing tunnel.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom