Predicting Spread Probability of Learning-Effect Computer Virus
Author(s) -
WeiChang Yeh,
Edward Lin,
Chia-Ling Huang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6672630
Subject(s) - computer science , computer virus , artificial intelligence , machine learning , computer security
With the rapid development of network technology, computer viruses have developed at a fast pace. The threat of computer viruses persists because of the constant demand for computers and networks. When a computer virus infects a facility, the virus seeks to invade other facilities in the network by exploiting the convenience of the network protocol and the high connectivity of the network. Hence, there is an increasing need for accurate calculation of the probability of computer-virus-infected areas for developing corresponding strategies, for example, based on the possible virus-infected areas, to interrupt the relevant connections between the uninfected and infected computers in time. The spread of the computer virus forms a scale-free network whose node degree follows the power rule. A novel algorithm based on the binary-addition tree algorithm (BAT) is proposed to effectively predict the spread of computer viruses. The proposed BAT utilizes the probability derived from PageRank from the scale-free network together with the consideration of state vectors with both the temporal and learning effects. The performance of the proposed algorithm was verified via numerous experiments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom