z-logo
open-access-imgOpen Access
Dynamic Large-Scale Server Scheduling for IVF Queuing Network in Cloud Healthcare System
Author(s) -
Yafei Li,
Hongfeng Wang,
Li Li,
Yaping Fu
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6670288
Subject(s) - computer science , scheduling (production processes) , queue , queueing theory , cloud computing , service (business) , server , markov decision process , key (lock) , operations research , computer network , markov process , operations management , operating system , engineering , statistics , economy , mathematics , economics
As one of the most effective medical technologies for the infertile patients, in vitro fertilization (IVF) has been more and more widely developed in recent years. However, prolonged waiting for IVF procedures has become a problem of great concern, since this technology is only mastered by the large general hospitals. To deal with the insufficiency of IVF service capacity, this paper studies an IVF queuing network in an integrated cloud healthcare system, where the two key medical services, that is, egg retrieval and transplantation, are assigned to accomplish in the general hospital, while the routine medical tests are assigned into the community hospital. Based on continuous-time Markov procedure, a dynamic large-scale server scheduling problem in this complicated service network is modeled with consideration of different arrival rates of multiple type of patients and different service capacities of multiple servers that can be defined as doctors of the general hospital. To solve this model, a reinforcement learning (RL) algorithm is proposed, where the reward functions are designed for four conflicting subcosts: setup cost, patient waiting cost, penalty cost for unsatisfied patient personal preferences, and medical cost of patient. The experimental results show that the optimal service rule of each server’s queue obtained by the RL method is significantly superior to the traditional service rule.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom