Iterative Learning Control for Switched Systems with Sensor Saturation Constraints
Author(s) -
Wei Cao,
Jinjie Qiao,
Ming Sun
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/6670048
Subject(s) - iterative learning control , control theory (sociology) , saturation (graph theory) , computer science , control (management) , control engineering , engineering , artificial intelligence , mathematics , combinatorics
To solve trajectory tracking problem of switched system with sensor saturation, an iterative learning control algorithm is proposed. The method uses actual measurement error to modify the control variable of system on the premise that switched rule does not change along iteration axis, but it randomly changes along time axis. Moreover, by dealing with the saturation via diagonal matrix method, the convergence of the algorithm is strictly proved in the sense of λ-norm, and the convergence condition is derived. The algorithm can achieve complete tracking of desired trajectory in the finite time interval under the random switched rule, as iterations increase. The simulation example verifies the validity of the proposed algorithm.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom