Research on the Seismic Performance of Straw Panel-Infilled Concrete Frame by Shaking Table Test
Author(s) -
Jia Ming Zhu,
Yuling Bian,
Aiping Zhou
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/6669967
Subject(s) - earthquake shaking table , frame (networking) , structural engineering , table (database) , test (biology) , geotechnical engineering , engineering , geology , forensic engineering , computer science , mechanical engineering , data mining , paleontology
Infill wall-frame interaction-induced damage and failure have been found in many previous earthquakes due to the inappropriate estimation of the stiffness of infill walls. It is a common knowledge of design philosophy that properly lowering the lateral stiffness of infill wall may significantly improve the seismic performances of concrete frames. Fabricated straw wall, a sandwich-type structure with tenon and groove, is proposed as a new type of lightweight and environment-friendly infill wall. The lateral stiffness is much lower than that of masonry infill wall. Shaking table tests were carried out for a concrete frame structure with fabricated straw wall, as well as for a frame with masonry infill wall for comparison. Results show that failure modes of them are different. Plastic hinges took place at the ends of beams in the frame with fabricated straw infill wall, different from the frame with masonry infill wall where the plastic hinges emerged at the ends of columns. Numerical analysis was conducted to verify and illustrate the failure mechanism. It indicates that the straw panel-infilled concrete frame well matches the design philosophy and presents better seismic performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom