z-logo
open-access-imgOpen Access
Improved Bidirectional RRT Path Planning Method for Smart Vehicle
Author(s) -
Qingying Ge,
Aijuan Li,
Shaohua Li,
Haiping Du,
Xin Huang,
Chuanhu Niu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6669728
Subject(s) - path (computing) , shortest path problem , motion planning , curvature , algorithm , computer science , mathematics , artificial intelligence , theoretical computer science , geometry , robot , programming language , graph
In this paper, an improved bidirectional RRT ∗ vehicle path planning method for smart vehicle is proposed. In this method, the resultant force of the artificial potential field is used to determine the search direction to improve the search efficiency. Different kinds of constraints are considered in the method, including the vehicle constraints and the vehicle driving environment constraints. The collision detection based on separating axis theorem is used to detect the collision between the vehicle and the obstacles to improve the planning efficiency. The cubic B-spline curve is used to optimize the path to make the path’s curvature continuous. Both simulation and experiment are implemented to verify the proposed improved bidirectional RRT ∗ method. In the simulation analysis, this paper’s method can generate the smoothest path and takes the shortest time compared with the other two methods and it can be adaptive to the complicated environment. In the real vehicle experiment, we can see from the test results that this paper’s method can be applied in practice on the smart electric vehicle platform; compared with others’ algorithm, this paper’s algorithm can generate shortest and smoothest path.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom