z-logo
open-access-imgOpen Access
Study on the Mechanical Properties of Chlorine Saline Soil under the Interaction of Multiple Factors
Author(s) -
Anhua Xu,
Pengcheng Wang,
Jianhong Fang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6669697
Subject(s) - overburden pressure , cohesion (chemistry) , geotechnical engineering , water content , materials science , triaxial shear test , soil water , modulus , friction angle , strain hardening exponent , dynamic loading , composite material , shear (geology) , environmental science , geology , soil science , chemistry , organic chemistry
The distribution of chlorine saline soils is extensive in Haixi region of Qinghai Province in Northwest China. Its natural and geographical conditions are unique, and the external environment varies greatly. To study the effects of variable external environment on the mechanical characteristics of chlorine saline soils, a number of unconsolidated undrained (UU) dynamic triaxial tests under different confining pressure, moisture content, and loading frequency were carried out. The dynamic stress–dynamic strain, failure strength, dynamic elastic modulus, and parameter of shear strength were analyzed. The triaxial test results demonstrated that the stress–strain curves of the soil were strain-hardening. The failure strength and dynamic elastic modulus increased with the increasing of confining pressure; the law with moisture content and loading frequency were inconsistent. The dynamic cohesion and dynamic friction angle increased with the increasing of loading frequency, but decreased with the increasing of moisture content. Besides, the significance analysis theory was used to analyze the effect degree of different factors. It found that the effects of confining pressure, loading frequency, and the interaction between confining pressure and frequency on mechanical characteristics were significant, but the moisture content had less effect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom