z-logo
open-access-imgOpen Access
Effect of Morphology Parameter Determination on Contact Behavior of Rock Joints under Compressive Loading
Author(s) -
Feng Tian Tang,
Zhi Cheng Tang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/6669422
Subject(s) - asperity (geotechnical engineering) , joint (building) , geology , deformation (meteorology) , materials science , closure (psychology) , moment (physics) , geotechnical engineering , mechanics , structural engineering , composite material , physics , engineering , classical mechanics , market economy , economics
The closure behavior of rock joints is of critical importance to the study of hydromechanical behaviors and geophysical properties of jointed rock masses. Theoretical contact models, used to predict the relations of normal stress versus closure deformation, rely on morphology parameters of rock joint as the input parameters. The relevance of the contact models depends on the inherent assumptions and the accuracy with which the input parameters are determined. In the present study, morphology parameters of three rock joints are determined by the spectral moment approach and peak identification method, respectively. The differences are found to vary significantly depending on the selected method. The phenomenon would be related to the definition of an asperity peak on joint profile. The spectral method only considers the so-called asperity peaks, while the deterministic approach further accounts for the asperity shoulders. Finally, the morphology parameters determined by the two methods are treated as the input parameters of a validated theoretical model. The comparisons between the theoretical curves and the experimental results indicate that parameters determined by the deterministic method would be more reliable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom