z-logo
open-access-imgOpen Access
Total Oxidation of Isopropanol in Its Liquid Phase, at a Low Temperature in the Presence of Prepared and Characterized Zinc Oxide
Author(s) -
Younes Dehmani,
Abdellatif Amhoud,
Sadik Abouarnadasse
Publication year - 2021
Publication title -
international journal of analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.352
H-Index - 16
eISSN - 1687-8779
pISSN - 1687-8760
DOI - 10.1155/2021/6667551
Subject(s) - zinc , wurtzite crystal structure , catalysis , desorption , adsorption , acetone , activation energy , catalytic oxidation , chemistry , fourier transform infrared spectroscopy , phase (matter) , selectivity , oxide , inorganic chemistry , nuclear chemistry , chemical engineering , organic chemistry , engineering
The complete oxidation of isopropanol in its liquid phase at a low temperature was studied in the presence of zinc oxide (ZnO). This solid was prepared with the precipitation method. Structural analysis (infrared in Fourier transform and diffraction of X-rays) and textured (adsorption/desorption of N2) were conducted for the wurtzite structure results, an IV type isotherm with a type H3 hysteresis. This solid presents a good catalytic activity against the complete oxidation of isopropanol, a constant of selectivity equal to 1; however, the studied temperatures were 40, 60, and 80°C. In addition, a kinetic study of the oxidation was performed and showed that the reaction follows a successive mechanism isopropanol-acetone-carbon dioxide. The low value of the apparent energy of the activation of this solid confirms the high value of the initial rate of the catalytic oxidation reaction of isopropanol in the temperature range studied.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom