z-logo
open-access-imgOpen Access
Hedyotis diffusa plus Scutellaria barbata Suppress the Growth of Non-Small-Cell Lung Cancer via NLRP3/NF- κ B/MAPK Signaling Pathways
Author(s) -
Ya-Xin Lv,
Haoran Pan,
Xinying Song,
Qing-Qi Chang,
Dandan Zhang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/6666499
Subject(s) - apoptosis , in vivo , mapk/erk pathway , cell growth , cyclin d1 , p38 mitogen activated protein kinases , lewis lung carcinoma , kinase , pharmacology , in vitro , biology , cancer research , chemistry , traditional medicine , medicine , cell cycle , cancer , biochemistry , metastasis , microbiology and biotechnology
Hedyotis diffusa (HD) plus Scutellaria barbata (SB) have been widely used in antitumor clinical prescribes as one of herb pairs in China. We investigated the effect of aqueous extract from Hedyotis diffusa plus Scutellaria barbata at the equal weight ratio (HDSB11) in inhibiting the growth of murine non-small-cell lung cancer cell (NSCLC) line LLC in vivo and in vitro in this study. Compared with other aqueous extracts, HDSB11 showed the lowest IC 50 in inhibiting cell proliferation at 0.43 mg/ml. Besides, HDSB11 effectively suppressed colony formation and induced cell apoptosis. The further assessment of HDSB11 on the murine Lewis-lung-carcinoma-bearing mouse model showed it significantly inhibited tumors' bioluminescence at the dose of 30 g crude drug/kg. Mechanistically, HDSB11 attenuated the expressions of NLRP3, procaspase-1, caspase-1, PRAP, Bcl-2, and cyclin D1 and downregulated the phosphorylation levels of NF- κ B, ERK, JNK, and p38 MAPK. In conclusion, HDSB11 could alleviate cell proliferation and colony formation and induce apoptosis in vitro and tumor growth in vivo , partly via NF- κ B and MAPK signaling pathways to suppress NLRP3 expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom