z-logo
open-access-imgOpen Access
Time‐Frequency Analysis and Target Recognition of HRRP Based on CN‐LSGAN, STFT, and CNN
Author(s) -
Jianghua Nie,
Yongsheng Xiao,
Lizhen Huang,
Feng Lv
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6664530
Subject(s) - computer science , short time fourier transform , artificial intelligence , pattern recognition (psychology) , convolutional neural network , fourier transform , feature (linguistics) , range (aeronautics) , generative adversarial network , generative grammar , speech recognition , deep learning , mathematics , fourier analysis , mathematical analysis , linguistics , philosophy , materials science , composite material
Aiming at the problem of radar target recognition of High-Resolution Range Profile (HRRP) under low signal-to-noise ratio conditions, a recognition method based on the Constrained Naive Least-Squares Generative Adversarial Network (CN-LSGAN), Short-time Fourier Transform (STFT), and Convolutional Neural Network (CNN) is proposed. Combining the Least-Squares Generative Adversarial Network (LSGAN) with the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), the CN-LSGAN is presented and applied to the HRRP denoise. The frequency domain and phase features of HRRP are gained by STFT in order to facilitate feature learning and also match the input data format of the CNN. These experimental results show that the CN-LSGAN has better data augmentation performance and can effectively avoid the model collapse compared to the generative adversarial network (GAN) and LSGAN. Also, the method has better recognition performance than the one-dimensional CNN method and the Long Short-Term Memory (LSTM) network method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom