z-logo
open-access-imgOpen Access
Rehabilitation Brace Based on the Internet of Things 3D Printing Technology in the Treatment and Repair of Joint Trauma
Author(s) -
Dahua Zhang,
Xiang Zhang
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/6663892
Subject(s) - brace , rehabilitation , 3d printed , joint (building) , 3d printing , the internet , medicine , physical therapy , engineering , computer science , mechanical engineering , structural engineering , world wide web , biomedical engineering
More and more people pay attention to the printing speed and quality of 3D printing tools. In order to understand whether the 3D printing rehabilitation brace can play a role in the treatment and repair of joint trauma, we used 3D printing technology to print the rehabilitation brace and compared with the traditional rehabilitation brace. The printed parts were analyzed in detail. The experimental results prove that the rehabilitation braces made by the two methods can play a role in the repair of joint trauma. However, 3D printed rehabilitation braces can better meet the needs of patients with detailed patient data in application. The braces are more suitable, and their production speed is about 35% faster than traditional methods. Through the survey of patients and doctors, it is found that the satisfaction of patients and doctors with printed braces is above 89%, while the satisfaction with traditionally made braces is only about 60%. This shows that the rehabilitation brace based on the Internet of Things 3D printing technology has a more significant role in the treatment and repair of joint trauma, and the effect is better.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom