Compact Stars Admitting Noether Symmetries in Energy-Momentum Squared Gravity
Author(s) -
M. Sharif,
M. Zeeshan Gul
Publication year - 2021
Publication title -
advances in astronomy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.364
H-Index - 34
eISSN - 1687-7977
pISSN - 1687-7969
DOI - 10.1155/2021/6663502
Subject(s) - noether's theorem , physics , general relativity , symmetry (geometry) , homogeneous space , theoretical physics , big bounce , mathematical physics , energy–momentum relation , conserved quantity , gravitation , momentum (technical analysis) , classical mechanics , dark energy , cosmology , astrophysics , geometry , lagrangian , physical cosmology , mathematics , finance , economics
This paper investigates the geometry of compact stellar objects through the Noether symmetry approach in the energy-momentum squared gravity. This newly developed theory overcomes the problems of big bang singularity and provides the viable cosmological consequences in the early time universe. Moreover, its implications occur in high curvature regime where the deviations of energy-momentum squared gravity from general relativity is confirmed. We consider the minimal coupling model of this modified theory and formulate symmetry generators as well as corresponding conserved quantities. We use conservation relation and apply some suitable initial conditions to evaluate the metric potentials. Finally, we explore some interesting features of the compact objects for appropriate values of the model parameters through numeric analysis. It is found that compact stellar objects in this particular framework depend on the model parameters as well as conserved quantities. We conclude that Noether symmetries generate solutions that are consistent with the astrophysical observational data and hence confirm the viability of this procedure.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom