z-logo
open-access-imgOpen Access
NCDN: A Node-Failure Resilient CDN Solution with Reinforcement Learning Optimization
Author(s) -
Zhihao Wang,
Sheng-Yong Du,
Min Ren
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/6663243
Subject(s) - computer science , reinforcement learning , replication (statistics) , node (physics) , distributed computing , network packet , resilience (materials science) , computer network , layer (electronics) , the internet , content delivery , content delivery network , distributed data store , world wide web , artificial intelligence , server , statistics , physics , chemistry , mathematics , structural engineering , organic chemistry , engineering , thermodynamics
Content Delivery Networks (CDNs) have enabled large-scale, reliable, and efficient content distribution over the Internet. Although CDNs have been very successful in serving a large portion of Internet traffic, they have several drawbacks. Despite their distributed nature, they rely on largely centralized management and replication. *is can affect availability in case of node failure. Further, CDNs are complex infrastructures that spanmultiple layers of the networking stack. To address these issues, in this paper, we introduce NCDN, a novel highly distributed system for large-scale delivery of content and services. NCDN is designed to provide resilience against node failure through location-independent storage and replication of content.*is is achieved through a two-layer architecture: the first layer (exposure layer) exposes services implemented by NCDN (e.g., Web, SFTP) to clients; the second layer (hidden layer) provides reliable distributed storage of content and application state. Content in NCDN’s hidden layer is stored and exchanged as Named Data Network (NDN) content packets. We employ the reinforcement learning (RL) to dynamically learn the optimal numbers of duplicates for different type of contents, because the RL agent has the advantage of not requiring expert labels or knowledge and instead the ability to learn directly from its own interaction with the world. *e combination of NDN and RL brings NCDN fine-grained, fully decentralized content replication mechanisms. We compare the performance and resilience of NCDN to those of an idealized CDN via extensive simulations. Our results show that NCDN is able to provide higher availability than CDNs (between 8% and 100% higher under the same conditions), without substantially increasing content retrieval delay.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom