z-logo
open-access-imgOpen Access
Project Gradient Descent Adversarial Attack against Multisource Remote Sensing Image Scene Classification
Author(s) -
Yan Jiang,
Guisheng Yin,
Ye Yuan,
Qingan Da
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6663028
Subject(s) - computer science , adversarial system , convolutional neural network , artificial intelligence , classifier (uml) , deep neural networks , deep learning , contextual image classification , gradient descent , pattern recognition (psychology) , machine learning , image (mathematics) , artificial neural network
Deep learning technology (a deeper and optimized network structure) and remote sensing imaging (i.e., the more multisource and the more multicategory remote sensing data) have developed rapidly. Although the deep convolutional neural network (CNN) has achieved state-of-the-art performance on remote sensing image (RSI) scene classification, the existence of adversarial attacks poses a potential security threat to the RSI scene classification task based on CNN. The corresponding adversarial samples can be generated by adding a small perturbation to the original images. Feeding the CNN-based classifier with the adversarial samples leads to the classifier misclassify with high confidence. To achieve a higher attack success rate against scene classification based on CNN, we introduce the projected gradient descent method to generate adversarial remote sensing images. Then, we select several mainstream CNN-based classifiers as the attacked models to demonstrate the effectiveness of our method. The experimental results show that our proposed method can dramatically reduce the classification accuracy under untargeted and targeted attacks. Furthermore, we also evaluate the quality of the generated adversarial images by visual and quantitative comparisons. The results show that our method can generate the imperceptible adversarial samples and has a stronger attack ability for the RSI scene classification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom