z-logo
open-access-imgOpen Access
Comparison of Diagnosis Accuracy between a Backpropagation Artificial Neural Network Model and Linear Regression in Digestive Disease Patients: an Empirical Research
Author(s) -
Wei Wei,
Xu Yang
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6662779
Subject(s) - backpropagation , artificial neural network , linear regression , artificial intelligence , regression , computer science , disease , machine learning , regression analysis , medicine , statistics , pathology , mathematics
A Noninvasive diagnosis model for digestive diseases is the vital issue for the current clinical research. Our systematic review is aimed at demonstrating diagnosis accuracy between the BP-ANN algorithm and linear regression in digestive disease patients, including their activation function and data structure.Methods We reported the systematic review according to the PRISMA guidelines. We searched related articles from seven electronic scholarly databases for comparison of the diagnosis accuracy focusing on BP-ANN and linear regression. The characteristics, patient number, input/output marker, diagnosis accuracy, and results/conclusions related to comparison were extracted independently based on inclusion criteria.Results Nine articles met all the criteria and were enrolled in our review. Of those enrolled articles, the publishing year ranged from 1991 to 2017. The sample size ranged from 42 to 3222 digestive disease patients, and all of the patients showed comparable biomarkers between the BP-ANN algorithm and linear regression. According to our study, 8 literature demonstrated that the BP-ANN model is superior to linear regression in predicting the disease outcome based on AUROC results. One literature reported linear regression to be superior to BP-ANN for the early diagnosis of colorectal cancer.Conclusion The BP-ANN algorithm and linear regression both had high capacity in fitting the diagnostic model and BP-ANN displayed more prediction accuracy for the noninvasive diagnosis model of digestive diseases. We compared the activation functions and data structure between BP-ANN and linear regression for fitting the diagnosis model, and the data suggested that BP-ANN was a comprehensive recommendation algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom