Study on Overburden Stability and Development Height of Water Flowing Fractured Zone in Roadway Mining with Cemented Backfill
Author(s) -
Yu Dong,
Yucheng Huang,
Jifang Du,
Fei Zhao
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6661168
Subject(s) - overburden , geology , geotechnical engineering , roof , coal mining , coal , overburden pressure , aquifer , mining engineering , groundwater , engineering , structural engineering , waste management
In order to explore the stability of overburden rock and the development height of water flowing fractured zone in roadway filling mining, based on the movement and deformation mechanism of overburden rock, the mechanical analysis of overburden stability and failure was carried out, and the mechanical model of main roof rock beam was established, and the ultimate span and limit deflection of rock beam fracture were deduced. Combined with the mechanical model of the main roof fractured rock, the basis for the judgment of overburden failure developing to fractured zone is given in this paper. Taking a coal mine roadway backfill under water-bearing stratum as an example, based on the equivalent mining height, the theoretical calculation and analysis are carried out on the stability of overburden rock and the height of water flowing fractured zone. The reliability of the theoretical analysis is verified compared with the empirical formula and the numerical simulation results. The results showed that the water flowing fractured zone developed to the bottom of no. 7 glutenite, with a height of 32.5 m, slightly less than the calculation result of the empirical formula. The thickness of the waterproof coal pillar was 39.8 m, which was much less than the distance from the aquifer to the coal seam and can be mined safely.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom