z-logo
open-access-imgOpen Access
Distributed Sensor Local Linear Fusion Detection of Weak Pulse Signal in Chaotic Background
Author(s) -
Liyun Su,
Meini Li,
Shengli Zhao,
Ting Xie
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/6661142
Subject(s) - chaotic , signal (programming language) , fusion , sensor fusion , pulse (music) , detection theory , computer science , acoustics , physics , artificial intelligence , telecommunications , detector , programming language , philosophy , linguistics
This paper combines the distributed sensor fusion system with the signal detection under chaotic noise to realize the distributed sensor fusion detection from chaotic background. First, based on the short-term predictability of the chaotic signal and its sensitivity to small interference, the phase space reconstruction of the observation signal of each sensor is carried out. Second, the distributed sensor local linear autoregressive (DS-LLAR) model is constructed to obtain the one-step prediction error of each sensor. Then, we construct a Bayesian risk model and also obtain the corresponding conditional probability density function under each sensor’s hypothesis test which firstly needs to fit the distribution of prediction errors according to the parameter estimation. Finally, the fusion optimization algorithm is designed based on the Bayesian fusion criterion, and the optimal decision rule of each sensor and the optimal fusion rule of the fusion center are jointly solved to effectively detect the weak pulse signal in the observation signal. Simulation experiments show that the proposed method which used a distributed sensor combined with a local linear model can effectively detect weak pulse signals from chaotic background.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom